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FIG. 3. Experimental and theoretical departure diameters. 

It seems, therefore. that for departure diameters less than 
about 1.6 mm or for Jakob numbers less than about 16, the 
bubble departure is controlled by surface tension force while 
for D,, > 1Omm (approx.) or N,, > 100 (approx.) the inertia 
forces control bubble departure. For departure diameters 
between 1.6 and 10 mm (approx.) or N,, between 16 and 100 
(approx.) the surface tension and inertia forces are of nearly 
equal importance. 

Figure 3 shows Dd as function of N,,. Curve 1 is a plot 
of experimental departure diameters while curves 3 and 3 
show respectively the values of Dd obtained from the follow- 
ing equations: 

Fe = Fs7 (13) 

F8 = FC,+ F,.,. (141 

It is evident that values of Dd predicted by (14) are in 
reasonable agreement with experiment for N,, > 100 while 
for N,, < 16 the experimental values are closer to those 
predicted by equation (13). 

CONCLCSION 

Equations (13) and (14) predict satisfactorily the bubble 
departure diameter for N,, < 16 (approx.) or N,, > 100 
(approx.). respectively. For intermediate values of N,, the 
departure diameter should be computed from equation (10). 
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NOMENCLATURE 

thickness of model; 
temperature difference between lower and 
plane; 
acceleration of gravity; 
dimensionless Cartesian coordinates: 
dimensionless wave numbers in the x- and 
:-direction, respectively: 
Rayleigh number. 

dimensionless overall wave number: 
dimensionless perturbation temperature: 
tilt angle with respect to the horizontal. 

at 

9, 

of 
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INTRODUCTION 

upper 

THIS note is concerned with free, thermal convection in a 
porous layer being tilted an angle cp with respect to the 
horizontal. The layer is of infinite extent, and is bounded 
by two impermeable perfectly conducting planes separated 
by a distance h. The upper and lower planes are maintained 
at constant temperatures -AT/2 and AT/Z, respectively. 
Both from a geophysical and technical point of view this 
type of flow is of considerable interest, and especially the 
horizontal layer problem is well described in the literature. 
Concerning a tilted porous layer, however, published works 
are not numerous. Most recently Bories and Combarnous 
[1] have studied this problem. Their main experimental 
results may be stated as follows. At small Rayleigh numbers 
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FIG. 1. Values of Nu vs Racoscp for longitudinal rolls; 
-, the result obtained from Palm, Weber and 
Kvernvold [7]; -.-.-., limiting curves for the experi- 
mental data by Bories and Combarnous [l] for various tilt 
angles (o-60”); ---. result from the theoretical analysis 

in [l]. 

the motion is unicellular, constituting a basic flow. When 
the Rayleigh number, or the tilt angle, are sufficiently 
increased, instability occurs as two-dimensional disturb- 
ances with axes aligned in the direction of the basic flow 
(longitudinal rolls). 

ANALYTICAL RESULTS 

Let the x-axes be situated in the middle of the layer and 
tilted an angle cp with respect to the horizontal, and the 
y-axis be normal to the planes. Hence the basic flow is in 
the x-direction and varies linearly with y. The temperature 
profile is also linear in y. Adopting the notation and non- 
dimensionalisation from [2]. we may derive the following 
equation governing infinitesimal temperature perturbations, 
0, in a tilted porous layer 

{@I’--c?)* - a(D* -a’) - aZR 

+ikRtancp[y(D’-aZ)+D]}O(y)=O (1) 

subject to 0 = D% = 0 for y = ki, where D = d/dy, 
Rl = Races cp and c? = kZ fm’. Here u is the complex 
growth rate, Ra the Rayleigh number and k, m real wave 
numbers in the x- and z-directions, respectively. When cp is 
small, this equation can be solved by expanding B in series 
in tan cp. Formally, however. (1) is nearly similar to equation 
(3.10) in [2] except for a different sign in the last term and 
one additional term proportional to the square of the small 
parameter. 

Accordingly the results for the present stability problem 
can be derived from the analysis [Z]. We then obtain (i) the 
principle of exchange of stabilities is valid when cp is small, 

(ii) the critical Rayleigh number can be written 

R = Racoscp = 47?+3k~tan* cp+O(tan4cp) (2) 

where k,$+mg = 71’. Here the subscript 0 refers to the first 
term in a series expansion in tancp. For a purely two- 
dimensional disturbance with axis normal to the basic flow 
(a transverse roll) ma = 0, while for a longitudinal roll 
k. = 0. Accordingly longitudinal rolls minimize the Rayleigh 
number, and will therefore constitute the preferred mode 
of disturbance. The occurrence of longitudinal rolls with 
wave number K, and a critical Rayleigh number given by 
Ra cos cp = 4nZ have been confirmed experimentally in [l]. 
They also showed that longitudinal rolls constituted a 
possible stationary solution of the linearized problem. 

Actually hexagons were observed in [I] for tilt angles 
less than about 15”, while longitudinal rolls took over for 
cp 2 15”. The preference of hexagons in a nearly horizontal 
layer, however, may be attributed to non-linear effects such 
as the variation of the viscosity and thermal diffusivity with 
temperature (Palm [3], Busse [4]) or a changing mean 
temperature (Krishnamurti [5]). 

For a nearly vertical layer, observations show that the 
basic solution is stable, thus supporting the proof by Gill [6]. 

As shown in [l], the longitudinal roll solution exhibits 
no x-dependence for moderate values of the Rayleigh 
number and the tilt angle. Accordingly the non-linear system 
of equations governing stationary convection in the present 
problem is identical to that governing two-dimensional 
convection in a horizontal porous layer, except that the 
acceleration of gravity is diminished by the factor cos cp. 
Hence the analysis of Palm, Weber and Kvernvold [7] 
can be applied directly to this problem, substituting 9 cos cp 
for 9. Only the result for the Nusselt number will be given 
here, and this is plotted in Fig. 1. For comparison is plotted 
the experimental and theoretical results obtained by Bories 
and Combarnous [l]. 
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